Are there known upper and lower bounds for the number of colors required for drawing a multi-dimensional tesselation described by a Coxter-Dynkin diagram?
By skimming through “Higher-Dimensional Analogues of the Map Coloring Problem” by Bhaskar Bagchi and Basudeb Datta I assume that the upper-bound number of colors given the number of dimensions is 3^n+3^(n-1)-2
Nonetheless, I’m not sure how the curvature of the space influences this.
Do you have any other suggestions or approaches?
How does the 4-color theorem generalize for spaces of higher-dimensions and non-negative curvature described by Coexter-Dynkin diagrams?
I have also posted a similar question on Reddit.